Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5

نویسندگان

  • S. V. Eremeev
  • I. P. Rusinov
  • P. M. Echenique
  • E. V. Chulkov
چکیده

The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress Limited Scaling of Ge2Sb2Te5

The influence of stress on the phase change behaviour of Ge2Sb2Te5 encapsulated by ZnSSiO2 and TiN is investigated using temperature dependent Extended X-ray Asbsorption Fines Structure and Ellipsometry to determine the crystallisation temperature. The encapsulation material surrounding the Ge2Sb2Te5 has an increasingly dominant effect on the material’s ability to change phase and can cause a p...

متن کامل

Toward the Ultimate Limit of Phase Change in Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>

The limit to which the phase change memory material Ge2Sb2Te5 can be scaled toward the smallest possible memory cell is investigated using structural and optical methodologies. The encapsulation material surrounding the Ge2Sb2Te5 has an increasingly dominant effect on the material’s ability to change phase, and a profound increase in the crystallization temperature is observed when the Ge2Sb2Te...

متن کامل

Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state

Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic propert...

متن کامل

سیستمهای ناکام و همبسته الکترونی

 Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...

متن کامل

Role of activation energy in resistance drift of amorphous phase change materials

*Correspondence: Martin Salinga, Institute of Physics (IA): Physics of New Materials, RWTH Aachen University, Sommerfeldstr. 14, Aachen 52074, Germany e-mail: martin.salinga@ physik.rwth-aachen.de The time evolution of the resistance of amorphous thin films of the phase change materials Ge2Sb2Te5, GeTe and AgIn-Sb2Te is measured during annealing at T = 80◦C. The annealing process is interrupted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016